๊ด€๋ฆฌ ๋ฉ”๋‰ด

yeon's ๐Ÿ‘ฉ๐Ÿป‍๐Ÿ’ป

์‹œ๊ณ„์—ด ๋ถ„์„ ๋Œ€์ฒด ๋„ˆ๊ฐ€ ๋ญ”๋ฐ (ARIMA, AR, MA, ACF, PACF, STL ๋ถ„ํ•ด, ADF ๊ฒ€์ •) ๋ณธ๋ฌธ

Computer ๐Ÿ’ป/๋ฐ์ดํ„ฐ ๋ถ„์„

์‹œ๊ณ„์—ด ๋ถ„์„ ๋Œ€์ฒด ๋„ˆ๊ฐ€ ๋ญ”๋ฐ (ARIMA, AR, MA, ACF, PACF, STL ๋ถ„ํ•ด, ADF ๊ฒ€์ •)

yeon42 2022. 3. 16. 15:20
728x90

๐ŸŒณ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ

์‹œ๊ฐ„์˜ ํ๋ฆ„์— ๋”ฐ๋ผ ๊ด€์ฐฐ๋œ ๋ฐ์ดํ„ฐ

 

-> ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์„ ๋ถ„์„ํ•ด ๋ฏธ๋ž˜์˜ ๊ฐ’์„ ์˜ˆ์ธกํ•˜์ž.

 

(1) ์ถ”์„ธ(Trend) : ๋ฐ์ดํ„ฐ๊ฐ€ ์žฅ๊ธฐ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜ ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ

(2) ์ˆœํ™˜(Cycle)

(3) ๊ณ„์ ˆ์„ฑ(Seasonal): ํŠน์ • ์‹œ๊ฐ„์˜ ์ฃผ๊ธฐ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ํŒจํ„ด

(4) ๋ถˆ๊ทœ์น™์š”์†Œ(Random, Residual): ์„ค๋ช…๋  ์ˆ˜ ์—†๋Š” ์ž„์˜์˜ ๋ณ€๋™

 

 

๐ŸŒฟ ๋ฏธ๋ž˜ ์˜ˆ์ธก์˜ ์ „์ œ

- ๊ณผ๊ฑฐ์˜ ์ผ์ •ํ•œ ํŒจํ„ด์€ ๋ฏธ๋ž˜์—๋„ ๋™์ผํ•˜๊ฒŒ ๋ฐ˜๋ณต๋  ๊ฒƒ์ด๋‹ค.

-> ์•ˆ์ •์ (์ •์ƒ์ )์ธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋งŒ ๋ฏธ๋ž˜ ์˜ˆ์ธก์ด ๊ฐ€๋Šฅํ•˜๋‹ค.

 

 

๐ŸŒณ  ์ •์ƒ์ ์ด๋‹ค. (Stationary) = ์•ˆ์ •์ ์ด๋‹ค.

- ๊ณผ๊ฑฐ์˜ ํŒจํ„ด์ด ๋ฏธ๋ž˜์—๋„ ๋ฐ˜๋ณต๋  ๊ฒƒ์ด๋‹ค.

- ์‹œ๊ณ„์—ด์˜ ํ†ต๊ณ„์  ํŠน์ง•(ํ‰๊ท , ๋ถ„์‚ฐ, ์ž๊ธฐ ์ƒ๊ด€)์ด ๋ณ€ํ•˜์ง€ ์•Š๋Š”๋‹ค.

- ๋žœ๋คํ•œ ์›€์ง์ž„์„ ๊ฐ€์ง€์ง€๋งŒ, ์‹œ์ ๋งˆ๋‹ค ์œ ์‚ฌํ•˜๊ฒŒ ๋™์ž‘ํ•˜๋Š” ํŠน์ง•์ด ์žˆ์–ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ์•ˆ์ •๋œ ๋ถ„ํฌ๋ฅผ ๊ฐ–๋Š”๋‹ค.

 

(1) ๋ชจ๋“  ์‹œ์  t์— ๋Œ€ํ•ด ํ‰๊ท ์ด ๊ฐ™๋‹ค.

(2) ๋ชจ๋“  ์‹œ์  t์— ๋Œ€ํ•ด ๋ถ„์‚ฐ์ด ๊ฐ™๋‹ค.

(3) ์ž๊ธฐ ๊ณต๋ถ„์‚ฐ (์ž๊ธฐ ์ƒ๊ด€๊ด€๊ณ„)์ด ์‹œ๊ฐ„์ด ์•„๋‹Œ ์‹œ์ฐจ์— ์˜์กดํ•œ๋‹ค. (|t-s| = h)

 

 

 

๐ŸŒฟ ์ •์ƒ์ ์ด์ง€ ์•Š์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ?

- ๋กœ๊ทธ ๋ณ€ํ™˜: ๋ถ„์‚ฐ์ด ์ปค์ง€๋Š” ๊ฒฝํ–ฅ์„ ๊ฐ€์ง€๋Š” ์‹œ๊ณ„์—ด์„ ์•ˆ์ •ํ™”

- ์ฐจ๋ถ„: ์ถ”์„ธ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ํšจ๊ณผ

- ๊ณ„์ ˆ์ฐจ๋ถ„: ๊ณ„์ ˆ์ถ”์„ธ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ํšจ๊ณผ

 

 

๐ŸŒณ STL ๋ถ„ํ•ด (Seasonal & Trend decomposition using Losses)

์‹œ๊ณ„์—ด์—๋Š” Trend, Cycle, Seasonal, Residual ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ์—ˆ๋‹ค.

- ์—ฌ๊ธฐ์„œ ๋ณดํ†ต ์ถ”์„ธ(Trend)์™€ ์ฃผ๊ธฐ(Cycle)์„ ๊ฒฐํ•ฉํ•ด ํ•˜๋‚˜์˜ ์„ฑ๋ถ„์œผ๋กœ ์—ฌ๊ธฐ๊ฒŒ ๋˜๋Š”๋ฐ, ์ด์— ๋”ฐ๋ผ ์‹œ๊ณ„์—ด์€

(1) ์ถ”์„ธ-์ฃผ๊ธฐ ์„ฑ๋ถ„

(2) ๊ณ„์ ˆ์„ฑ ์„ฑ๋ถ„

(3) ๋‚˜๋จธ์ง€ (remainder) ์„ฑ๋ถ„์œผ๋กœ ์ด 3๊ฐ€์ง€๋กœ ๊ตฌ๋ถ„์ด ๋œ๋‹ค.

 

- ๋‹จ์ : ๋ง์…ˆ ๋ถ„ํ•ด๋งŒ ์ง€์›

 

 

 

๐ŸŒณ  ARIMA

; AR(Autoregression) ๋ชจํ˜•๊ณผ MA(Moving Average) ๋ชจํ˜•์„ ํ•ฉ์นœ ๋ชจ๋ธ

- ๊ณผ๊ฑฐ์˜ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ๋กœ, ๋‘ ๊ฐ€์ง€ ๋ณ€์ˆ˜(์‹œ๊ณ„์—ด, ์ข…์† ๋ณ€์ˆ˜)๋ฅผ ๊ฐ€์ง€๊ณ  ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•œ๋‹ค.

- ์ „์ œ: ๋ฐ์ดํ„ฐ๊ฐ€ stationaryํ•จ

 

 

๐ŸŒฑ  AR (Auto Regression)

: ์ž๊ธฐ ํšŒ๊ท€ ๋ชจ๋ธ (๊ณผ๊ฑฐ ์ž์‹ ๊ณผ ํ˜„์žฌ ์ž์‹ ๊ณผ์˜ ๊ด€๊ณ„ ์ •์˜)

- ์˜ˆ์ธกํ•˜๊ณ ์ž ํ•˜๋Š” ํŠน์ • ๋ณ€์ˆ˜์˜ ๊ณผ๊ฑฐ ๊ด€์ธก๊ฐ’์˜ ์„ ํ˜• ๊ฒฐํ•ฉ์œผ๋กœ, ํ•ด๋‹น ๋ณ€์ˆ˜์˜ ๋ฏธ๋ž˜๊ฐ’์„ ์˜ˆ์ธกํ•˜๋Š” ๋ชจํ˜•

- ์ด์ „ ์ž์‹ ์˜ ๊ด€์ธก๊ฐ’์ด ์ดํ›„ ์ž์‹ ์˜ ๊ด€์ธก๊ฐ’์— ์˜ํ–ฅ์„ ์ค€๋‹ค๋Š” ์•„์ด๋””์–ด์— ๊ธฐ๋ฐ˜

 

* AR(p) ๋ชจํ˜•์˜ ์‹

 

์ถœ์ฒ˜: https://blog.naver.com/tjgml1343/222077619748

 

 

๐ŸŒฑ  MA (Moving Average)

: ์˜ˆ์ธก ์˜ค์ฐจ๋ฅผ ํ†ตํ•ด ๋ฏธ๋ž˜๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ชจํ˜• (๊ณผ๊ฑฐ ์ž์‹ ๊ณผ ํ˜„์žฌ ์ž์‹ ์˜ ์˜ค์ฐจ์™€์˜ ๊ด€๊ณ„ ์ •์˜)

 

* MA(q) ๋ชจํ˜•์˜ ์‹

 

 

๐ŸŒฑ  ARIMA

: ARIMA(p, d, q)๋ชจํ˜•์ด๋ž€ d์ฐจ ์ฐจ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ์— AR(p) ๋ชจํ˜•๊ณผ MA(q) ๋ชจํ˜•์„ ํ•ฉ์นœ ๋ชจํ˜•

 

 

 

p์™€ q๋Š” ACF ๊ทธ๋ž˜ํ”„์™€ PACF ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ ค ํ™•์ธํ•˜์ž

 

 

๐ŸŒณ  ACF (์ž๊ธฐ ์ƒ๊ด€ ํ•จ์ˆ˜, AutoCorrelation Function)

: k ์‹œ๊ฐ„ ๋‹จ์œ„๋กœ ๊ตฌ๋ถ„๋œ ์‹œ๊ณ„์—ด์˜ ๊ด€์ธก์น˜ ๊ฐ„ ์ƒ๊ด€ ๊ด€๊ณ„ ํ•จ์ˆ˜

- k=1, 2, 3, ... ์ผ ๋•Œ, k๋‹จ๊ณ„ ๋–จ์–ด์ง„ ๋ฐ์ดํ„ฐ ์  ์Œ ๊ฐ„๋“ค์˜ ์ƒ๊ด€ ๊ด€๊ณ„

- ์‹œ์ฐจ์— ๋”ฐ๋ฅธ ์ผ๋ จ์˜ ์ž๊ธฐ ์ƒ๊ด€

- y_t์™€ y_t+k ์‚ฌ์ด์˜ ์ž๊ธฐ ์ƒ๊ด€ ๊ตฌํ•˜๊ธฐ

 

 

- ์ ์„ ์œผ๋กœ ์œ ์˜๋ฏธํ•œ ์ƒ๊ด€ & ์œ ์˜๋ฏธํ•˜์ง€ ์•Š์€ ์ƒ๊ด€์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์„ ์˜ ์œ„์ชฝ์ด ์œ ์˜๋ฏธํ•œ ๊ฐ’!

- ์—ฌ๊ธฐ์„œ ARIMA์˜ MA ๊ณ„์ˆ˜(q)๊ฐ€ 4๊ฐœ ํ•„์š”ํ•  ๊ฒƒ์ด๋ผ ์˜ˆ์ƒ ๊ฐ€๋Šฅํ•˜๋‹ค. (5๋ฒˆ์งธ ๋ถ€ํ„ฐ ์ ์„  ์•ˆ์œผ๋กœ ๋“ค์–ด์˜ด)

 

 

 

๐ŸŒณ  PACF (๋ถ€๋ถ„(ํŽธ) ์ž๊ธฐ ์ƒ๊ด€ ํ•จ์ˆ˜, Partial ACF)

๋ถ€๋ถ„ ์ƒ๊ด€: ๋‘ ํ™•๋ฅ  ๋ณ€์ˆ˜ X์™€ Y์— ์˜ํ•ด ๋‹ค๋ฅธ ๋ชจ๋“  ๋ณ€์ˆ˜๋“ค์— ๋‚˜ํƒ€๋‚œ ์ƒ๊ด€ ๊ด€๊ณ„๋ฅผ ์„ค๋ช…ํ•˜๊ณ  ๋‚œ ์ดํ›„์—๋„ ์—ฌ์ „ํžˆ ๋‚จ์•„์žˆ๋Š” ์ƒ๊ด€ ๊ด€๊ณ„

 

: ์‹œ์ฐจ k์—์„œ์˜ k๋‹จ๊ณ„๋งŒํผ ๋–จ์–ด์ ธ ์žˆ๋Š” ๋ชจ๋“  ๋ฐ์ดํ„ฐ ์ ๋“ค๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„

- y_t์™€ y_t-k๊ฐ„์˜ ์ˆœ์ˆ˜ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋กœ ๋‘ ์‹œ์  ์‚ฌ์ด์— ํฌํ•จ๋œ ๋ชจ๋“  y_t-1, y_t-2, ..., y_t-k+1์˜ ์˜ํ–ฅ์€ ์ œ๊ฑฐํ•œ๋‹ค.

 

- ์—ฌ๊ธฐ์„  ARIMA ๋ชจ๋ธ์˜ AR ๊ณ„์ˆ˜(p)๊ฐ€ 2๊ฐ€ ํ•„์š”ํ•  ๊ฒƒ์ด๋ผ ์˜ˆ์ƒ๋œ๋‹ค. (3๋ฒˆ์งธ๋ถ€ํ„ฐ ์ ์„  ์•ˆ์œผ๋กœ ๋“ค์–ด์˜ด)

 

 

 

๐Ÿฅ• ACF์™€ PACF๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•ด ARIMA ๋ชจ๋ธ์˜ p์™€ q๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค!

 

 

 

๐Ÿฅ• ๋ชจ๋ธ๋ง์„ ๋งˆ์นœ ํ›„ ์ž”์ฐจ์˜ ACF ๊ทธ๋ž˜ํ”„๋ฅผ ๊ทธ๋ ค ์ •์ƒ์„ฑ์„ ๋”ฐ๋ฅด๋Š”์ง€ ์—ฌ๋ถ€๋ฅผ ํ™•์ธํ•˜๊ณ , ๋งŒ์•ฝ ์ •์ƒ์„ฑ์„ ๋”ฐ๋ฅด์ง€ ์•Š๋Š”๋‹ค๋ฉด p, d, q์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์žฌ์กฐ์ •ํ•ด ๋‹ค์‹œ ๋ชจ๋ธ๋งํ•˜๋Š” ์ž‘์—…์„ ๊ฑฐ์น˜์ž.

 

๐Ÿฅ• ์ตœ์ ์˜ ์ฐจ์ˆ˜๋ฅผ ๊ตฌํ•˜๊ณ  ์ฐจ๋ถ„์„ ์ง„ํ–‰ํ•œ ํ›„์—๋„ ์—ฌ๋Ÿฌ ๋ชจ๋ธ์ด ์กด์žฌํ•  ๊ฒฝ์šฐ ๊ฐ€์žฅ ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ์„ ์„ ํƒํ•˜๊ฑฐ๋‚˜ AIC ์ ์ˆ˜๊ฐ€ ๊ฐ€์žฅ ๋‚ฎ์€ ๋ชจ๋ธ์„ ์„ ํƒํ•˜์ž.

 

 

 

 

๐ŸŒณ ADF ๊ฒ€์ • (Augmented Dickey Fuller)

์ •์ƒ์„ฑ์„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•œ ๋‹จ์œ„๊ทผ ๊ฒ€์ • ๋ฐฉ๋ฒ•

- ๋‹จ์œ„๊ทผ(unit root); ์‹œ๊ณ„์—ด์—์„œ ์˜ˆ์ธกํ•  ์ˆ˜ ์—†๋Š” ๊ฒฐ๊ณผ ์ดˆ๋ž˜

- ์ž๊ธฐ ์ƒ๊ด€์„ ํ•จ๊ป˜ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์–ด DF ๊ฒ€์ •๋ณด๋‹ค ๋” ๋ณต์žกํ•œ ๋ชจํ˜•๋“ค์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Œ

 

- ๊ท€๋ฌด๊ฐ€์„ค(H_0): ๋‹จ์œ„๊ทผ์ด ์กด์žฌํ•œ๋‹ค.

- ๋Œ€๋ฆฝ๊ฐ€์„ค(H_1): ์‹œ๊ณ„์—ด ์ž๋ฃŒ๊ฐ€ ์ •์ƒ์„ฑ์„ ๋งŒ์กฑํ•œ๋‹ค. (๋‹จ์œ„๊ทผ์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค.)

 

* ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰(ADF Statistics)๊ฐ€ Critical Value๋ณด๋‹ค ์ž‘์œผ๋ฉด stationaryํ•œ ๋ฐ์ดํ„ฐ

* p-value๊ฐ€ ์„ค์ •ํ•œ ์‹ ๋ขฐ ์ˆ˜์ค€๊ฐ’(eg. 0.05)๋ณด๋‹ค ์ž‘์œผ๋ฉด stationaryํ•œ ๋ฐ์ดํ„ฐ

 

 

 

 

๐ŸŒณ  SARIMA

ARIMA๋Š” Non-seasonal ๋ชจ๋ธ์„ ๊ฐ€์ •ํ•œ๋‹ค.

 

-> ๊ณ„์ ˆ์„ฑ ํŒจํ„ด์ด ๋ฐ˜์˜๋œ ๋ชจ๋ธ: SARIMA (Seasonal ARIMA)

- SARIMAX ํด๋ž˜์Šค๋ฅผ ์ด์šฉํ•˜๋ฉด Multiplacted SARIMA(p, d, q)*(P, D, Q, m) ๋ชจํ˜• ์ถ”์ • ๋ฐ ์˜ˆ์ธก ๊ฐ€๋Šฅ

 

์ถœ์ฒ˜: https://today-1.tistory.com/36

 

 

 

 

 

 

 


 

/ References

 

https://leedakyeong.tistory.com/entry/ARIMA%EB%9E%80-ARIMA-%EB%B6%84%EC%84%9D%EA%B8%B0%EB%B2%95-AR-MA-ACF-PACF-%EC%A0%95%EC%83%81%EC%84%B1%EC%9D%B4%EB%9E%80

 

ARIMA๋ž€? :: ARIMA ๋ถ„์„๊ธฐ๋ฒ•, AR, MA, ACF, PACF, ์ •์ƒ์„ฑ์ด๋ž€?

์•ž ์„œ, ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์™€ ์‹œ๊ณ„์—ด ๋ถ„์„์— ๋Œ€ํ•œ ๊ฐ„๋‹จํ•œ ์„ค๋ช…๊ณผ ์‹œ๊ณ„์—ด ๋ถ„ํ•ด๋ฒ•์— ๋Œ€ํ•ด ์„ค๋ช…ํ–ˆ๋‹ค. 2021.05.24 - [ํ†ต๊ณ„ ์ง€์‹/์‹œ๊ณ„์—ด์ž๋ฃŒ ๋ถ„์„] - ์‹œ๊ณ„์—ด ๋ถ„ํ•ด๋ž€?(Time Series Decomposition) :: ์‹œ๊ณ„์—ด ๋ถ„์„์ด๋ž€? ์‹œ

leedakyeong.tistory.com

 

https://blog.naver.com/tjgml1343/222077619748

 

[ADsP] ์‹œ๊ณ„์—ด ๋ถ„์„ ๋ชจ๋ธ์„ ๊ณต๋ถ€ํ–ˆ๋‹ค. (AR, MA, ARIMA, ACF, PACF)

์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ž€ ์‹œ๊ฐ„์˜ ํ๋ฆ„์— ๋”ฐ๋ผ ๊ด€์ฐฐ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋งํ•œ๋‹ค. ํ‰๊ท ์ด๋‚˜ ๋ถ„์‚ฐ์ด ๋ณ€ํ™”ํ•˜๋ƒ์— ๋”ฐ๋ผ ์ •์ƒ์„ฑ ์‹œ...

blog.naver.com

 

https://today-1.tistory.com/36

 

์‹œ๊ณ„์—ด ์•Œ๊ณ ๋ฆฌ์ฆ˜_ARIMA/SARIMA

Time Series Analysis Method : ์ ๋ถ„ ์„ ํ˜•ํ™•๋ฅ ๊ณผ์ • ์ค‘ ARIMA, SARIMA ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ดํŽด๋ณด๊ธฐ๋กœ ํ•จ 1. ARIMA(Auto-Regressive Integrated Moving Average) : A R I M A ( p , d , q ) ">ARIMA(p,d,q)๋ž€ 1์ด์ƒ์˜ ์ฐจ๋ถ„..

today-1.tistory.com

 

Comments