Notice
Recent Posts
Recent Comments
Link
μΌ | μ | ν | μ | λͺ© | κΈ | ν |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- νκ΅μ΄μλ² λ©
- μνμ½λ©
- λ°±μ€
- 리μ‘νΈ
- native
- κΉν
- Titanic
- nlp
- Git
- λ°μ΄ν°λΆμ
- c++
- μΈνλ°
- λΆμ
- λ°μ΄ν°μκ°ν
- μ νλμν
- μλ² λ©
- λ¨Έμ λ¬λ
- λμ
- linearalgebra
- Kaggle
- cs231n
- λ°μ΄ν°
- react
- λ€μ΄ν°λΈ
- AI
- μλλ‘μ΄λμ€νλμ€
- μκ³ λ¦¬μ¦
- νμ΄νλ
- λ₯λ¬λ
- κ²°μ νΈλ¦¬
Archives
- Today
- Total
yeon's π©π»π»
[μ κ΅ λμ 곡μ νμ€ λ°μ΄ν°] μλλ³ κ³΅μ λΆν¬ λ³Έλ¬Έ
Computer π»/λ°μ΄ν° λΆμ
[μ κ΅ λμ 곡μ νμ€ λ°μ΄ν°] μλλ³ κ³΅μ λΆν¬
yeon42 2021. 8. 13. 00:49728x90
4. μλλ³ κ³΅μ λΆν¬
4.1 μλλ³ κ³΅μ λΉμ¨
- μλλ³λ‘ ν©κ³ λ°μ΄ν° μΆλ ₯
city_count = df["μλ"].value_counts().to_frame()
city_mean = df["μλ"].value_counts(normalize=True).to_frame()
- normalize=True : λΉμ¨λ‘ ꡬνκΈ°
- λμ ν©μ³μ£ΌκΈ° μν΄ dataframe ννλ‘ λ°κΎΈμλ€.
- ν©κ³μ λΉμ¨ ν¨κ» ꡬνκΈ°: merge
city = city_count.merge(city_mean, left_index=True, right_index=True)
city.columns = ["ν©κ³", "λΉμ¨"]
city.style.background_gradient()
4.2 곡μꡬλΆλ³ λΆν¬
- "곡μꡬλΆ" λ³λ‘ μμ λ€λ₯΄κ², "곡μλ©΄μ " λ³λ‘ μμ ν¬κΈ° λ€λ₯΄κ²
plt.figure(figsize=(8, 9))
sns.scatterplot(data=df_park, x="κ²½λ", y="μλ", hue="곡μꡬλΆ", size="곡μλ©΄μ ", sizes=(10, 100))
4.3 μλλ³ κ³΅μλΆν¬
- "μλ" λ³λ‘ μμ λ€λ₯΄κ², "곡μλ©΄μ " λ³λ‘ μμ ν¬κΈ° λ€λ₯΄κ²
plt.figure(figsize=(8, 9))
sns.scatterplot(data=df_park, x="κ²½λ", y="μλ", hue="μλ", size="곡μλ©΄μ ", sizes=(10, 100))
- countplot μΌλ‘ μλλ³ λΉλμ 그리기
sns.countplot(data=df, y="μλ", order=city_count.index, palette="Greens_r")
'Computer π» > λ°μ΄ν° λΆμ' μΉ΄ν κ³ λ¦¬μ λ€λ₯Έ κΈ
[νμ΄μ¬] Asterisk(*) (0) | 2021.08.16 |
---|---|
[μ κ΅ λμ 곡μ νμ€ λ°μ΄ν°] νΉμ 곡μ μκ°ν (0) | 2021.08.13 |
[μ κ΅ λμ 곡μ νμ€ λ°μ΄ν°] λ°μ΄ν° μμ½νκΈ° (0) | 2021.08.13 |
[μ κ΅ λμ 곡μ νμ€ λ°μ΄ν°] λ§μ€νΉ(μ νλ²νΈ, μ΄λ©μΌ, μλμ°¨ λ²νΈ) (0) | 2021.08.13 |
[μ κ΅ λμ 곡μ νμ€ λ°μ΄ν°] wordcloud(μλν΄λΌμ°λ) (0) | 2021.08.12 |
Comments