๊ด€๋ฆฌ ๋ฉ”๋‰ด

yeon's ๐Ÿ‘ฉ๐Ÿป‍๐Ÿ’ป

๊ณผ๋Œ€์ ํ•ฉ(Overfitting) vs. ๊ณผ์†Œ์ ํ•ฉ(Underfitting) ๋ณธ๋ฌธ

Computer ๐Ÿ’ป/Machine Learning

๊ณผ๋Œ€์ ํ•ฉ(Overfitting) vs. ๊ณผ์†Œ์ ํ•ฉ(Underfitting)

yeon42 2021. 8. 25. 21:19
728x90

https://m.blog.naver.com/qbxlvnf11/221324122821

 

๋จธ์‹ ๋Ÿฌ๋‹ - ๊ณผ๋Œ€์ ํ•ฉ(overfitting)๊ณผ ๊ณผ์†Œ์ ํ•ฉ(underfitting), ์ •๊ทœํ™”

(๋ณธ ๊ธ€์€ ์ฑ… 'Hands-On Machine Learning with Scikit-Learn & TensorFlow'์˜ ์ผ๋ถ€๋ฅผ ์ฐธ๊ณ ํ•˜์˜€...

blog.naver.com

์œ„ ๋ธ”๋กœ๊ทธ๋ฅผ ํ•„์‚ฌํ•˜๋ฉฐ ๊ณต๋ถ€ํ•œ ๊ฒƒ

 

 


์ถœ์ฒ˜: ์œ„ ๋ธ”๋กœ๊ทธ

 

 

* ๊ณผ๋Œ€์ ํ•ฉ (overfitting)

: ๋ชจ๋ธ์ด ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋„ˆ๋ฌด ์ž˜ ๋งž์ง€๋งŒ ์ผ๋ฐ˜์„ฑ์ด ๋–จ์–ด์ง„๋‹ค.

 

์ถœ์ฒ˜: ์œ„ ๋ธ”๋กœ๊ทธ

 

- ์œ„์˜ ๊ทธ๋ฆผ์—์„œ ํŒŒ๋ž€ ์„ ์˜ ๋ชจ๋ธ(ํ•จ์ˆ˜)์ด ์˜ค๋ฒ„ํ”ผํŒ…ํ•œ ์˜ˆ

- ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์ •ํ™•ํžˆ ๋‹ค ๊ฑฐ์น˜๋ฉฐ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค.

- but, ์ด ๋ชจ๋ธ์€ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ๋Š” ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค„ ํ™•๋ฅ ์ด ๋‚ฎ๋‹ค.

- because, ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋„ˆ๋ฌด ๋งž์ถฐ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ด ์™ธ์˜ ๋‹ค์–‘ํ•œ ๋ณ€์ˆ˜์—๋Š” ๋Œ€์‘ํ•˜๊ธฐ ํž˜๋“ฌ

  -> ๋ชจ๋ธ์˜ ๋ณต์žก๋„๊ฐ€ ํ•„์š” ์ด์ƒ์œผ๋กœ ๋†’๊ธฐ ๋•Œ๋ฌธ

 


  • ๊ณผ๋Œ€์ ํ•ฉ(overfitting) ํ•ด๊ฒฐ๋ฒ•

1. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ๋” ๋งŽ์ด ๋ชจ์œผ๊ธฐ

2. ์ •๊ทœํ™”(Regularization) : ๊ทœ์ œ, ๋“œ๋กญ-์•„์›ƒ ๋“ฑ์˜ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ ๋‹นํ•œ ๋ณต์žก๋„ ๊ฐ€์ง€๋Š” ๋ชจ๋ธ์„ ์ž๋™์ ์œผ๋กœ ์ฐพ์•„์ฃผ๋Š” ๋ฐฉ๋ฒ•

3. ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ์žก์Œ ์ค„์ด๊ธฐ : ์˜ค๋ฅ˜ ์ˆ˜์ •, ์ด์ƒ์น˜ ์ œ๊ฑฐ

 

 


 

- ์œ„์™€ ๊ฐ™์€ ๊ณผ๋Œ€์ ํ•ฉ ๋ชจ๋ธ์€ ๋ชจ๋ธ์„ ๊ฐ„๋‹จํ•˜๊ฒŒ ํ•ด์ฃผ๋ฉฐ ํ•ด๊ฒฐํ•ด์•ผ ํ•œ๋‹ค. = ๋ชจ๋ธ์˜ ๋ณต์žก๋„ ๋‚ฎ์ถ”๊ธฐ

- ๊ฐ„๋‹จํ•˜๊ฒŒ 2~3์ฐจ ํ•จ์ˆ˜์˜ ํ˜•ํƒœ๋กœ ๋งŒ๋“ค์ž.

--> ์ „๋ณด๋‹ค ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—๋Š” ์„ฑ๋Šฅ์ด ์ž˜ ๋‚˜์˜ค์ง€ ์•Š์ง€๋งŒ, ํ•„์š” ์ด์ƒ์œผ๋กœ ๋ณต์žกํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•˜์ง€ ์•Š์œผ๋ฉฐ, ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ์ž˜ ๋Œ€์ฒ˜ ํ•  ์ˆ˜ ์žˆ์Œ

 

 


 

* ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ(hyperparameter)

 

- ๊ทœ์ œ : ๋ชจ๋ธ์„ ๋‹จ์ˆœํ•˜๊ฒŒ ํ•˜๊ณ  ๊ณผ๋Œ€์ ํ•ฉ์˜ ์œ„ํ—˜์„ ๊ฐ์ˆ˜์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ์— ์ œ์•ฝ์„ ๊ฐ€ํ•˜๋Š” ๊ฒƒ

- ํ•™์Šตํ•˜๋Š” ๋™์•ˆ ์ ์šฉํ•  ๊ทœ์ œ์˜ ์–‘์€ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๊ฒฐ์ •ํ•จ

  - ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜ํ–ฅ ๋ฐ›์ง€x

  - ํ›ˆ๋ จ ์ „์— ๋ฏธ๋ฆฌ ์ง€์ •๋˜์–ด ํ›ˆ๋ จํ•˜๋Š” ๋™์•ˆ์—๋Š” ์ƒ์ˆ˜๋กœ ๋‚จ์•„์žˆ์Œ

 

- ํฐ ๊ฐ’์œผ๋กœ ์ง€์ •ํ• ์ˆ˜๋ก ๋” ํ‰ํ‰ํ•˜๊ณ  ๋ณต์žก๋„ ๋‚ฎ์€ ๋ชจ๋ธ ์–ป์Œ

- ๋„ˆ๋ฌด ๋†’์ด๋ฉด ๊ณผ์†Œ์ ํ•ฉ ๋ฌธ์ œ ๋ฐœ์ƒํ•˜๋ฏ€๋กœ ์ ์ ˆํ•˜๊ฒŒ ์„ค์ •ํ•˜์ž!

 

 


* ๊ณผ์†Œ์ ํ•ฉ (Underfitting)

: ๋ชจ๋ธ์ด ๋„ˆ๋ฌด ๋‹จ์ˆœํ•ด ๋ฐ์ดํ„ฐ์˜ ๋‚ด์žฌ๋œ ๊ตฌ์กฐ๋ฅผ ํ•™์Šตํ•˜์ง€ ๋ชปํ•  ๋•Œ ๋ฐœ์ƒ

- ๊ณผ๋Œ€์ ํ•ฉ์˜ ๋ฐ˜๋Œ€

 


  • ๊ณผ์†Œ์ ํ•ฉ(underfitting)์˜ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•

1. ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ๋” ๋งŽ์€ ๋ณต์žกํ•œ ๋ชจ๋ธ ์„ ํƒ

2. ๋ชจ๋ธ์˜ ์ œ์•ฝ ์ค„์ด๊ธฐ : ๊ทœ์ œ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐ’ ์ค„์ด๊ธฐ

3. ์กฐ๊ธฐ ์ข…๋ฃŒ ์‹œ์  (overfitting์ด ๋˜๊ธฐ ์ „์˜ ์‹œ์ )๊นŒ์ง€ ์ถฉ๋ถ„ํžˆ ํ•™์Šต

 

 


 

* ์ผ๋ฐ˜ํ™”์™€ ๊ณผ๋Œ€์ ํ•ฉ, ๊ณผ์†Œ์ ํ•ฉ

 

- ๊ตณ์ด ๋”ฐ๋ผ์ง€์ž๋ฉด ๊ณผ์†Œ์ ํ•ฉ๋ณด๋‹จ ๊ณผ๋Œ€์ ํ•ฉ์ธ ์ƒํƒœ๊ฐ€ ๋” ๋‚˜์„ ์ˆ˜ ์žˆ๋‹ค.

- ๊ณผ๋Œ€์ ํ•ฉ์€ ์ตœ์†Œํ•œ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์—์„œ๋ผ๋„ ์„ฑ๋Šฅ์ด ์ž˜ ๋‚˜์˜ค๊ธฐ ๋•Œ๋ฌธ

 

- ์ผ๋ฐ˜ํ™”(generalization)๋Š” ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋†’์€ ์„ฑ๋Šฅ์„ ๊ฐ–์ถ”๋Š” ๊ฒƒ

- ์ฆ‰, ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅํ–ˆ์„ ๋•Œ, output์˜ ์ •ํ™•๋„๊ฐ€ ๋†’์€ ๊ฒƒ

Comments