๊ด€๋ฆฌ ๋ฉ”๋‰ด

yeon's ๐Ÿ‘ฉ๐Ÿป‍๐Ÿ’ป

Classifier Evaluation Metrics ๋ณธ๋ฌธ

Computer ๐Ÿ’ป/Machine Learning

Classifier Evaluation Metrics

yeon42 2021. 11. 20. 10:55
728x90

* Confusion Matrix

  Predict
Positive Negative
Actual Positive TP FN
Negative FP TN

TP; ํ™˜์ž๋ผ๊ณ  ์˜ˆ์ธกํ–ˆ๋Š”๋ฐ ์‹ค์ œ๋กœ ํ™˜์ž

FP; ํ™˜์ž๋ผ๊ณ  ์˜ˆ์ธกํ–ˆ๋Š”๋ฐ ์‹ค์ œ๋กœ ํ™˜์ž x

FN; ํ™˜์ž x๋ผ๊ณ  ์˜ˆ์ธกํ–ˆ๋Š”๋ฐ ์‹ค์ œ๋กœ ํ™˜์ž

TN; ํ™˜์ž x๋ผ๊ณ  ์˜ˆ์ธกํ–ˆ๋Š”๋ฐ ์‹ค์ œ๋กœ ํ™˜์ž x

 

-> TP & TN ์ด ์‹ค์ œ๊ฐ’๊ณผ ๋™์ผํ•˜๊ฒŒ ์˜ˆ์ธกํ•จ

 

 

 

* Accuracy

: ์‹ค์ œ ๊ฐ’์„ ์–ผ๋งˆ๋‚˜ ๋งŽ์ด ๋งž์ท„๋ƒ (= true์˜ ๋น„์œจ)

Accuracy = (TP + TN) / All

 

 

 

* Sensitivity = Recall

: ์‹ค์ œ positive๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ์˜ˆ์ธกํ–ˆ๋ƒ

Sensitivity = TP / (TP + FN)

 

 

 

* Specificty

: ์‹ค์ œ negative๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ์˜ˆ์ธกํ–ˆ๋ƒ

Specificity = TN / (FP + TN)

 

 

 

 

* Precision

: ๋‚ด๊ฐ€ positive๋ผ๊ณ  ํ•œ ๊ฒƒ ์ค‘์— ๋งž์€ ๋น„์œจ(์ง„์งœ positive)

Precision = TP / (TP + FP)

 

 

 

 

* F1-score

: Precision๊ณผ Recall์˜ ์กฐํ™” ํ‰๊ท 

F = (2 * precision * recall) / (precision + recall)

- ์ด์ƒ์ ; ๋‘˜ ๋‹ค 1์ด์–ด์„œ F=1

 

 

 

 

* F๋ฒ ํƒ€

: precision๊ณผ recall์— weighted measure์„ ์คŒ

F๋ฒ ํƒ€ = ((1+๋ฒ ํƒ€^2) * preicison * recall) / ((๋ฒ ํƒ€^2)*precision + recall)

 

 

 

 

* Holdout Method

: ์ดˆ๊ธฐ ๋ฐ์ดํ„ฐ์…‹์„ train & test set์œผ๋กœ ๋‚˜๋ˆ„๊ธฐ

- Random Sampling

 

 

 

 

* Cross-validation (k-fold)

: ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ๋žœ๋คํ•˜๊ฒŒ k๊ฐœ์˜ ํด๋“œ๋กœ ๋‚˜๋ˆ„๊ธฐ

 

 

 

 

* Bootstrap

: ์›๋ž˜์˜ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ๋ถ€ํ„ฐ random sampling์„ ํ†ตํ•ด training data๋ฅผ ๋Š˜๋ฆฌ๋Š” ๋ฐฉ๋ฒ•

- ์ดˆ๊ธฐ training set์ด ๋„ˆ๋ฌด ์ž‘์€ ๊ฒฝ์šฐ (test data์™€ exclusiveํ•˜๊ฒŒ ๋‘๊ธฐ ์–ด๋ ค์šธ ๋•Œ)

- ์ค‘๋ณต์„ ํ—ˆ์šฉํ•ด ํฌํ•จ

Comments